Science-Industry Interaction and the Commercialization of Research

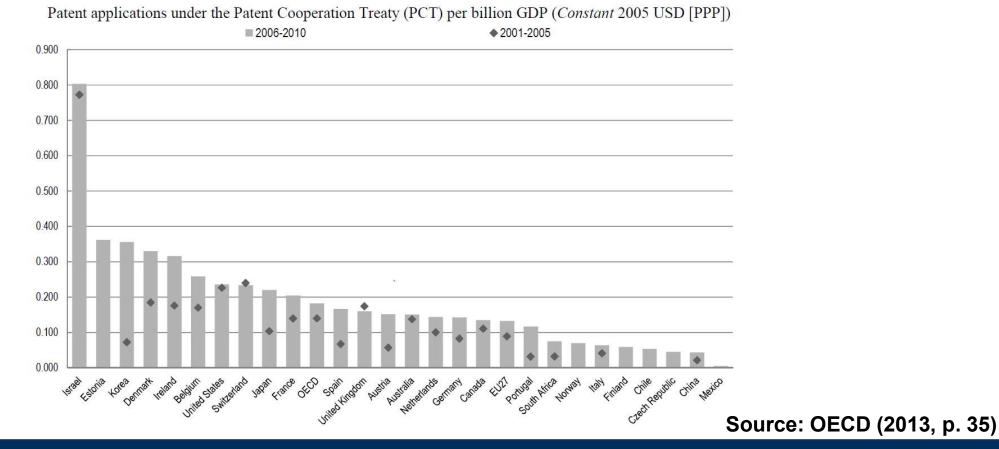
Matthias Hügel

Chair of Microeconomics Friedrich Schiller University Jena

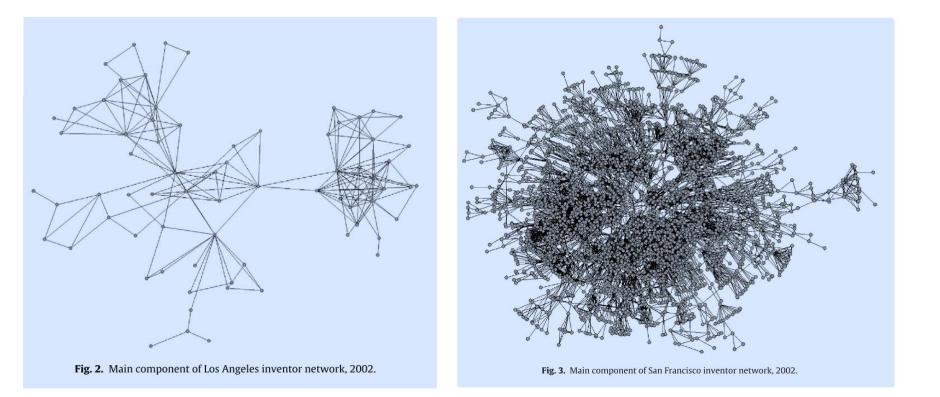
- Member of the Chair of Microeconomics, Friedrich Schiller University Jena
- PhD candidate
- Projects:
 - "Potentials and barriers of knowledge and technology transfer using the example of the innovation system Thuringia"
 - "Building African capacities for the development of clusters"
- Teaching:
 - Basics of Microeconomics
 - Basics of Innovation Economics
 - Supervision of Bachelor theses and Master theses
- Research Interests:
 - Economics of Innovation
 - Knowledge and Technology Transfer
 - Regional Economics

Contact: <u>matthias.huegel@uni-</u> jena.de

Introduction


- Increased importance of commercializing of research
 → valorization of research and intellectual assets by industry
- Public research institutions and universities as source of new technologies
- Breeding ground for start-ups
 - \rightarrow increase innovation in the economy
 - \rightarrow raise productivity
 - \rightarrow create job opportunities
 - \rightarrow address societal challenges (e.g. climate change, food security)
- Trigger for a stronger focus on commercialization activities by researcher and policy-maker

Important sources for innovative firms 2006-08


Market sources (suppliers, customers, competitors, etc.) Institutional sources (higher education, government) Internal sources (within firm/group) % 90 80 70 60 50 40 30 20 10 0 Contraction of the second hound 14 Costal Se . te 1120000 St. A. S. A. SHI W 625 Nº NO sty -66 500 9⁰ ALL ALL and and 3 1º 4r Call of Source: OECD (2013, p. 30)

Percentage of innovative firms citing source as "highly important" for innovation

Patent applications by universities 2001-05 and 2006-10

Relevance for clusters

Source: Casper (2013)

	in netv	in network main component			
	SF	aj tasta	· · · · · · · LA		
1980	0%		229		
1981	. 0%		239		
1982	0%	752 132	: 169		
1983					
1984	0%	1	. 59		
1985	3%		59		
1986	3%	794 391	59		
1987	3%		69		
1988 · · · ·	- 3%	a i casaras			
1989	4%		- 79		
1990	5%	8	59		
1991	9%		49		
1992	10%		: 39		
1993	14%				
1994	16%	83 19	; 39		
1995	28%	2	. 09		
1996	25%	1	: 0%		
1997	28%		: 09		
1998	36%	ora terorene ur			
1999	35%		. 09		
2000	43%	1	: 09		
2001	37%	:	19		
2002	39%	194 195	. 19		
2003	37%	a i narara	29		
2004	41%		29		
2005	29%		19		

- Two Biotechnology clusters with similar research endowments
- Size of inventor network in SF increased
- Also the share of academics within the network increased in SF, while it decreased in LA
- →twice as many Biotech patents and three-times more university spin-offs in SF with only 30% more sponsored funding compared to LA
- →Interactions between inventors in clusters seem to have reciprocal effects on cluster itself and commercialization activities by academics

Outline

Part I	General aspects regarding science
Part II	Modelling science-industry interactions
Part III	Knowledge and technology transfer from academia to industry

Outline

Part I	General aspects regarding science	
Part II	Modelling science-industry interactions	
Part III	Knowledge and technology transfer from academia to industry	

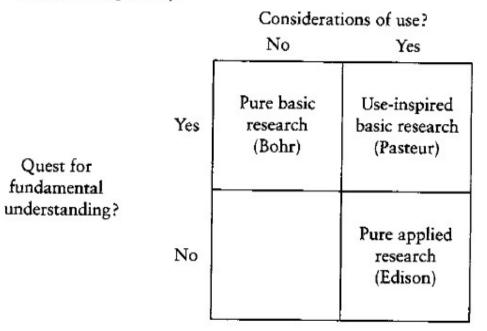
- 1. Conducting science: Scientists and the science system
- 2. Financing science: Who finances science?
- 3. Ownership: Who owns scientific results?

Conducting science

Ethos of science

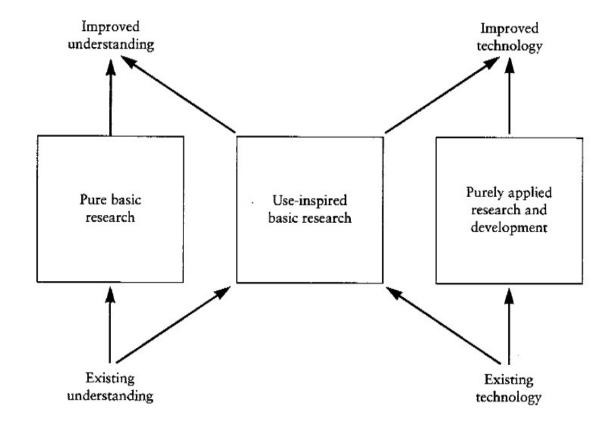
- Four norms of scientific conduct (Merton 1973)
 - Communism: knowledge generation and sharing (scientific results as public good)
 - Disinterestedness: independent work of scientists only for the contribution to the knowledge stock as an end in itself (integer without any influences due to the aim of money-making)
 - Universalism: verifiability of research and its results' independence of the investigator
 - Organized skepticism: scientists' approach of critical reflection regarding theorizing and conceptualizing

Reward system and incentives


- Scientists are rewarded by
 - Peer recognition and reputation based on their scientific contribution (Dasgupta & David, 1994)
 - Evaluation of research performance by publications and citations
 - → Publication orientation and "publish-or-perish" culture (Ndonzuau et al., 2002)
- Incentive to:
 - Disclose research results as soon as possible via publications
 - Extend common knowledge stock

Research orientation

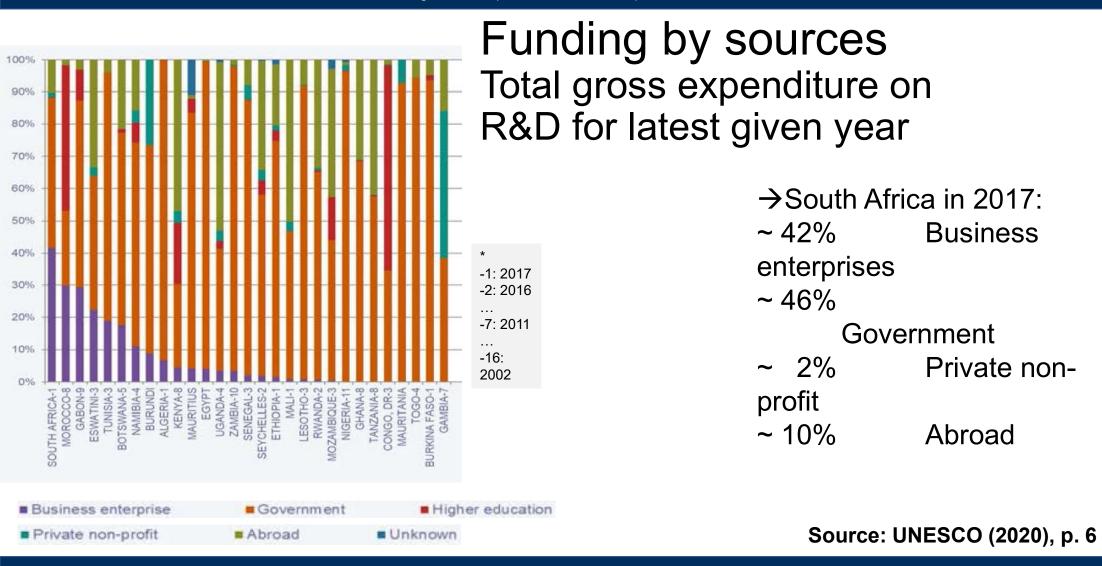
- Basic Research
 - Investigation into fundamental mechanisms without an application in mind ("Know why")
 - Rather geared towards discoveries than inventions
- Applied Research
 - Answering of a specific problem/question with scientific methods
 - Closer to inventions, usually motivated by an application

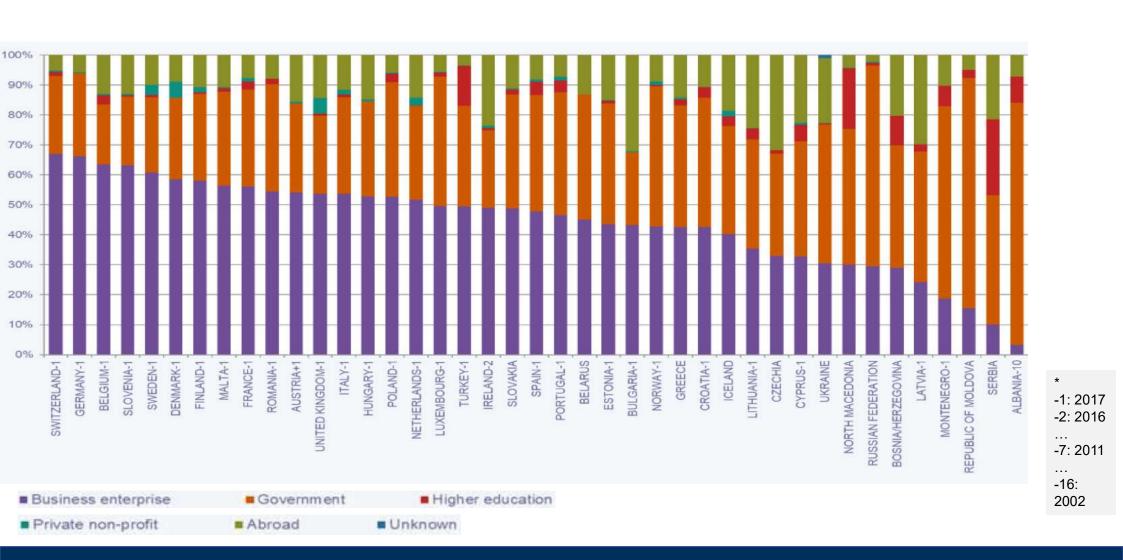

Quadrant model of scientific research

Research is inspired by:

Source: Stokes (1997, p. 73)

Dynamic model of scientific research




Source: Stokes (1997, p. 88)

Who finances science?

Who finances science?

- Should research/science be a private or a public endeavor?
- Pro private:
 - Inventions can lead to competitive advantage \rightarrow beneficial to invest
 - Individuals/firms often highly specialized → posses knowledge, "know best" what seems promising
- Pro public:
 - Knowledge has certain properties of a public good (non-excludibility, non-appropriability) → risk of "leakage" may cause underinvestment
 - Progress of society at large may depend on certain knowledge to be publicly available (and "non-blockable") → no "knowledge monopolies"

Who finances science?

Kenneth Arrow (1962)

Paradox situation regarding pricing if an individual/organization/firm would like to acquire information/knowledge/technology on a market:

- the buyer would like to know details to evaluate the usability
- as soon as the seller conveys knowledge, the incentive for the buyer to pay decreases because valuable information has been disclosed

 \rightarrow No (or less than optimal) transactions, because the price cannot be determined ex-ante

→ Very important theoretical argument for Intellectual Property Rights (IPR)

Who owns the results of science?

Who owns the results of science?

Patents are the most prominent example (trademarks, Copyright, ...)

What is a patent?

It is the official, formal right to exclude others from the use of an invention:

- In exchange for public disclosure (description, drawings, etc.)
- For a certain period of time (up to 20 years)
- In a certain jurisdiction/country

\rightarrow Patents allow to gain a temporary monopoly

Excursus: Patent application

Where?

- Patent Offices:
 - CIPC = " Companies and Intellectual Property Commission" (South Africa)
 - EPO (European Union)
 - USPTO (US)
 - DPMA (Germany)

How?

- Include filing, drawings, state-of-the-art research and claims
- Non-publication: period of investigation
- Decision and grant (or refusal)

Further information (application process, costs, ...) for patent filing at CIPC: Link

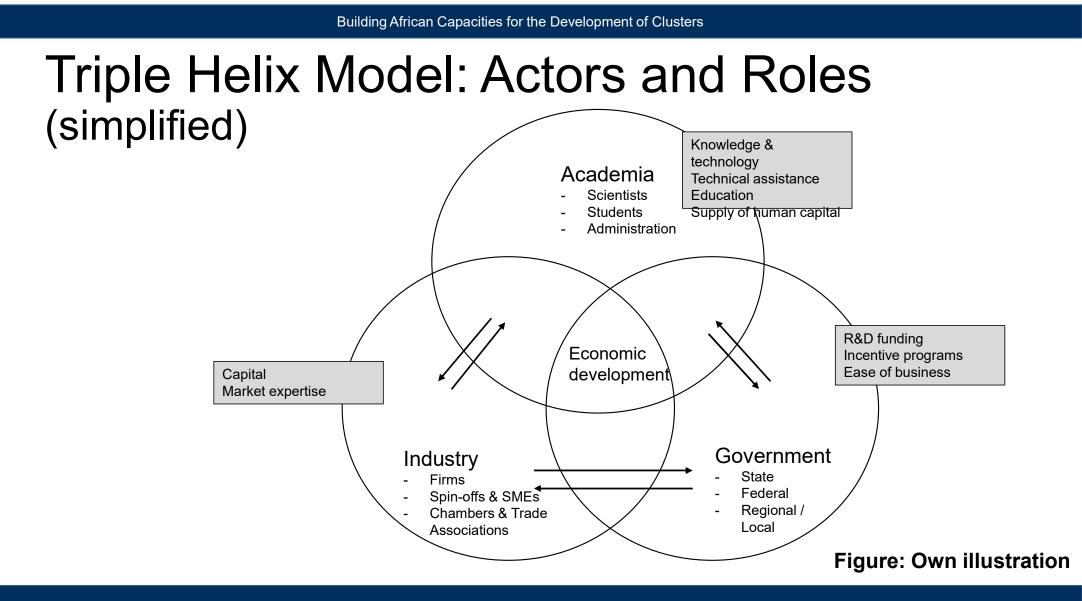
Outline

Part I	General aspects regarding science
Part II	Modelling science-industry interaction
Part III	Knowledge and technology transfer from academia to industry

Triple Helix Model

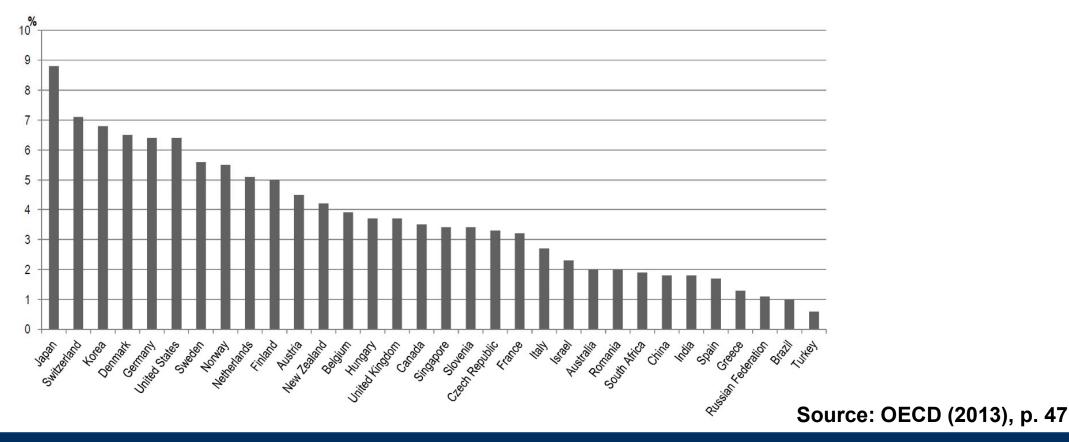
Image: Link

Multi-Stakeholder Model of Innovation


• Pioneered by Etzkowitz/Leydesdorff

Initially clear roles of components

- University: conduct (basic) research
- Business: produce/commercialize
- Government: regulate


Hybridization

• Bi-lateral interactions: University-Business, University-Government, Business-Government

Industry-science co-publications, 2006-10

% of industry-science co-publications in total research publication output

Outline

Part I	General aspects regarding science
Part II	Modelling science-industry interaction
Part III	Knowledge and technology transfer between academia to industry

- 1. What is it about and why did it become important?
- 2. Transfer channels
- 3. Different logics and tensions
- 4. Benefits
- 5. Intermediary and bridging organizations
- 6. Conceptualizing knowledge and technology transfer

What is it about?

- What is Knowledge- and Technology Transfer?
 - Formal and informal movement of know-how, skills, technical knowledge or technology from one organizational setting to another (Roessner, 2000)
 - Pursuit to get inventions/discoveries "out" of academia (universities, research institutes, ...)
- Restricted view
 - With a commercial intent, into industry
 - Main channels: licensing, spin-offs
- More open view
 - Without a commercial intent, transfer into society at large
 - Main channels: (teaching), cooperative research, citizen science
- "In-betweens": joint research with industry, use-inspired basic research

Why did it become important?

- US: Bayh-Dole-Act (early 1980s)
 - Who owns federally-financed research results?
 - Patenting of universities rose dramatically afterwards
- "European Paradox"
 - Observation that Europe is strong in research...
 - ...but weak in application
 - Prime example: MP3-encoding
- Transfer as a solution to "push" more research into industry

Transfer Channels

- Great variety of transfer channels
- Examples:
 - Publishing
 - Research collaboration
 - Contract research
 - Patenting and licensing
 - Spin-offs
- Differ in:
 - Degree of formalisation
 - Degree of knowledge finalisation
 - Relational intensity

Different logics and tensions

	Academic setting	Commercial setting
Norms	Ethos of science defined by the norms communism, disinterestedness, univer- salism, organized skepticism and origi- nality (Merton, 1973; Ziman, 1984)	Market competition and rent-seeking un- der bureaucratic control, secrecy and re- strictions on disclosure (Sauermann & Stephan, 2013)
Relation to knowledge	Knowledge production and scientific progress (Nelson, 1959; Rosenberg, 1974)	Appropriation of knowledge for com- mercial exploitation (Levin et al., 1987)
Motivation	Intrinsic: Quest for fundamental under- standing, puzzle solving (Lam, 2011; Stokes, 1997) Extrinsic: reputation, peer-recognition and financial returns (Lam, 2011)	Intrinsic: passion for business ideas (Cardon et al., 2005) Extrinsic: financial gain and growth in- tentions (Cassar, 2007; Lam, 2011)
Reward system	Career progress and peer-recognition via publications, citations and rankings (Dasgupta & David, 1994)	Maximization of profit and market share
Competition	For journal publications, funding and research inputs (van Rijnsoever et al., 2008)	For markets and market share and for knowledge (Dosi & Nelson, 2010)
Competencies	Analytical thinking, methodological skills, technical skill, etc. (de Grande et al., 2014)	Ability to evaluate commercial poten- tial, acquire resources, to lead a team and show a vision (Baldini et al., 2007; Shane, 2004)

- Subject to different logics
- Different understanding of the meaning of knowledge and its treatment
- Pursue different goals
- Speak different (technical) languages

Source: Cantner et al. (2021)

Benefits (focus on University-Industry collaboration)

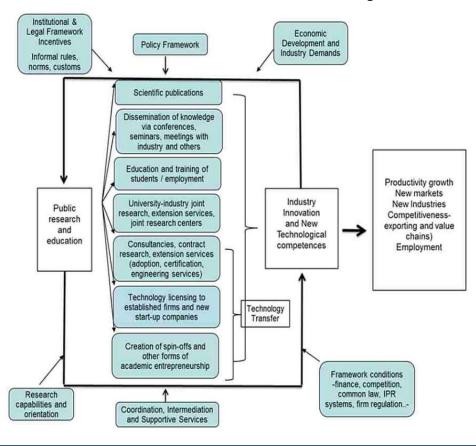
Industry perspective

- Monetary benefeits
- Recruiting
- Access to the latest research results and trends in research
- Complement lacking internal R&D
- Network access

University perspective

- Research funding
- Enriched education
- Access to industry R&D facilities
- Complementary expertise from application-oriented side
- Network access
- Gains from licensing and IPsales

Intermediary and bridging organizations Typology and examples


- Technology Transfer Offices (TTO)
- Incubator

. . . .

- Business innovation centre
- Science park and technology hub

→ Cluster Organisation

Conceptualising Knowledge and Technology Transfer between Academia and Industry

Source: Zuniga & Correa (2013): p. 4

Outlook Science-Industry Interaction II in workshop week 2

- Barriers to science-industry interaction
- Focus on specific transfer channels
- Transfer and its regional impact

→ Preferences? Wishes?

References

- Cantner, U.; Doerr, P.; Goethner, M.; Huegel, M. & Kalthaus, M. (2021): A procedural perspective on academic spin-off creation. Friedrich Schiller University Jena, mimeo.
- Casper, S. (2013): The spill-over theory reversed The impact of regional economies on the commercialization of university science, Research Policy, 42 (8), 1313-1324.
- Dasgupta, P. & David, P. A. (1994): Toward a new economics of science, Research Policy, 23 (5), 487–521
- Merton, R. K. (1973): The sociology of science Theoretical and empirical investigations. Chicago: Univ. of Chicago Press.
- Ndonzuau, F. N.; Pirnay, F. & Surlemont, B. (2002): A stage model of academic spin-off creation, Technovation, 22 (5), 281–289.
- OECD (2013): Commercialising Public Research New Trends and Strategies.
- Roessner, J. D. (2000): Technology transfer. In: Hill, C. Ed. Science and Technology Policy in the US, A Time of Change. London: Longman.
- Stokes, D. (1997): Pasteur's Quadrant: Basic Science and Technological Innovation, Washingtion, DC: The Brookings
 Institution.
- UNESCO (2020): UIS Fact Sheet No. 59.
- Zuniga, P. & Correa, P. (2013): Technology transfer from public research organizations: concepts.