Introduction to Social Network Analysis

Holger Graf

Chair of Microeconomics

Friedrich-Schiller-University Jena

FRIEDRICH-SCHILLER-UNIVERSITAT JENA Building African Capacities for the Development of Clusters

Co-inventorship

Figure 1 Inventors of Silicon Valley's Largest Component in 1986-1990 by Assignee and Importance of Inventions

Notes. Node sizes reflect the number of future prior art cites to an inventor, normalized by the number of collaborators (future prior art cites correlate with value, see Albert et al. 1991). Tie width indicates number of collaborations, tie color indicates age of tie (red is five years prior, blue is two to four years prior, and green is prior year), and colors indicate assignee. Boxed area provides example of highly clustered inventors. Note that the figures do not illustrate the thousands of other (by definition) smaller components in each region; inventors need not connect to any extant component – or even another node. They can connect to small components, such as dyads or triads, or work their entire careers in complete isolation. Graphed in Pajek with Kamada-Kawai/Free algorithm (Batagelj and Mrvar 1998). Adapted from Fleming and Marx (2006).

Source: Fleming, King & Juda (2007)

Regional innovation networks

Fig. 2. Main components of regional networks Note: Actors located within the region (headquarter or subsidiary) are marked in grey/red (electronic version), external actors are in black. Squares indicate a private actor; public research organizations are circles. The size of a node is proportional to the number of patents filed.

Source: Fritsch & Graf (2011)

Social Network Analysis - Holger Graf - Chair of Microeconomics - Friedrich-Schiller-University Jena

Cluster knowledge network

Figure 3. Structure of knowledge network in Valle de Colchagua. The size of the nodes is proportional to the measure of their knowledge base.

Source: Giuliani (2007)

Building African Capacities for the Development of Clusters

Patent wars

https://uk.pcmag.com/news/116009/infographic-smartphone-patent-wars-explained

Product space

Fig. 1. Ine product space. UN Interacting durative processing up native representing the 775 SITC-4 product classes exported in the 1998-2000 trade, and their colors are closen according to the classification introduced by period. (B) Network representation of the product space. Unliks are color colord. Learner.

Source: Hidalgo et al. (2007)

Some basic SNA literature

- Borgatti, SP, Everett, MG, Johnson, JC (2013) Analyzing Social Networks. London: Sage Publications
- Hanneman, RA, Riddle, M (2005) Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/ hanneman/)
- Jackson, MO (2008) Social and Economic Networks. Princeton University Press
- Scott, J, Carrington, P (eds.) (2011), The SAGE Handbook of Social Network Analysis, London: SAGE Publications
- Wassermann S, Faust K (1994) Social Network Analysis. Methods and Applications. Cambridge: Cambridge University Press

Contents

1. Introduction

2. Social Network Analysis 2.1 Primers

2.2 Data

- 3. Graph theoretic concepts
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

What is a network?

- A set of dyadic ties, all of the same type, among a set of actors
- Actors can be persons, organizations . . .
- A tie is an instance of a social relation

Building African Capacities for the Development of Clusters

Relations among persons

Relational states							
Similarities		Relational roles		Relational cognition		Relational events	
Location	Participation Attribute	Kinship	Other role	Affective	Perceptual	Interactions	Flows
Same spatial and temporal space	Same clubs, Same same events gender, same attitude	Mother of, sibling of	Friend of, boss of, student of, competitor	Likes, hates	Knows, knows of, sees as happy	Sold to, talked to, helped, fought with	Information, beliefs, money

Note: Content matters!

Each relation yields a different structure & has different effects

Building African Capacities for the Development of Clusters

Relations among organizations

Туре	Firms as entities	Via Individuals
Similarities	Joint membership in trade association; co-located in Silicon Valley	CEO of organization A sits on same board as CEO of organization B
Relations	Joint ventures; alliances; distribution agreements; own shares in; regards as competitor	Chief scientist of A is friend with chief scientist of B
Interactions	Sells products to; makes competitive move in response to	Representatives of A attend same conference as representatives of B
Flows	Technology transfers; cash infusions	Employee of A leaks information to employee of B

Relations among other entities

- Patents
 - Patents citing other patents
 - Co-occurrence of technological classes
- Research fields
 - Citations between fields
 - Co-classifications of publications or patents
 - People who publish in different fields
- Sectors
 - Input-output relations
 - Labour flows

Level of analysis

Level of analysis	Research question			
Dyad level	Are firms with overlapping technological knowledge bases more likely to form research collaborations?			
Node level	Do firms with more diverse technology partners innovate more?			
Network level	Are centralized regional networks more innovative?			

Contents

1. Introduction

2. Social Network Analysis

2.1 Primers

2.2 Data

- 3. Graph theoretic concepts
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Data for social networks

- Network data typically as a quadratic $n \times n$ matrix **A**, with rows and columns as observations
- \rightarrow Cell aij gives the relation between i and j.

- Tie strength: Strength of relationship, frequency of interaction, ...
- Actors and attributes vs. actors and their relations

Direction of ties

Ties can be directed or undirected

- Undirected ties: A and B write a joint paper, go to lunch together
- Directed ties: A cites B, A gives information to B

Logically vs empirically directed ties

- logically undirected relations can be empirically non-symmetric due to measurement error;
- logically ties might be directed, but we can only observe an undirected version.

Contents

1. Introduction

2. Social Network Analysis

3. Graph theoretic concepts 3.1 Basics

- 3.2 Network structure
- 3.3 Network positions
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Incidence and adjacency matrices

Set of vertices (nodes): $\mathcal{V} = \{A, B, C, D, E, F\}$ Set of edges (ties): $\mathcal{E} = \{(A, B), (A, D), (B, D), (B, F), (C, E), (C, F), (D, E), (D, F)\}$

Length and distance

- Length of a path is the number of links
- Distance (dij) between two nodes is length of the shortest path (aka geodesic) between two nodes
- Distance matrix:

 Diameter of a connected graph is the length of largest distance between any nodes

Components

- Maximal sets of nodes in which every node can reach every other by some path (no matter how long)
- A connected graph has just one component

For directed networks, we have to distinguish weak and strong components

Contents

1. Introduction

2. Social Network Analysis

3. Graph theoretic concepts

3.1 Basics

3.2 Network structure

- 3.3 Network positions
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Characterizing Networks

- Measures of cohesion
 - Density
 - Average degree / mean degree
 - Connectedness / fragmentation
- Average distance
- Clustering and transitivity
- Centralization

Density and mean degree

- Density number of ties, expressed as percentage of potential ties
- Mean degree average number of ties
- Density is highly size sensitive!

n = 25; density = 0.26; mean degree = 12.8

n = 25; density = 0.08; mean degree = 4

n = 100; density = 0.06; mean degree = 12.7

Connectedness and average distance

Connectedness measures use the distribution of links to measure cohesion:

- Share of actors in the main component
- Connectedness proportion of pairs that can reach each other, i.e. which are members of the same component
- Fragmentation the number of pairs that cannot reach each other

• Average distance:
$$L = \frac{\sum_{i \neq j} d_{ij}}{n(n-1)}$$

Clustering coefficient

- Clustering coefficient cohesion of the neighborhood
- Transitivity proportion of triples with 3 ties as a proportion of triples with 2 or more ties

Building African Capacities for the Development of Clusters

Centralization

Contents

1. Introduction

2. Social Network Analysis

3. Graph theoretic concepts

- 3.1 Basics
- 3.2 Network structure

3.3 Network positions

- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Different concepts of centrality

Degree centrality

- Which actor has most relations?
- Degree centrality as share of all possible relations

Closeness centrality

- Which actor is closest (least distant) to all other actors?
- Inverse of the sum of distances to all other nodes

Betweenness centrality

- Idea: who 'controls' information flows?
- High-betweenness vertices lie on a large number of non-redundant shortest paths between other vertices
 - \rightarrow 'bridges' or 'boundary spanners'
- Loosely: number of times that a node lies along the shortest path between two others

Eigenvector centrality

- Idea: connections to well connected actors are more important
- Centrality of each actor is proportional to the sum of the centralities of those actors to whom he or she is connected

Building African Capacities for the Development of Clusters

Node and label size proportional to respective centrality measure

Contents

- 1. Introduction
- 2. Social Network Analysis
- 3. Graph theoretic concepts

4. Innovation networks

- 5. Software A very short introduction
- 6. Data gathering and preparation

Interaction in the innovation process

Research is increasingly teamwork

- Changes in the organization of innovative activities
- General trend: increasing team size in research

Source: Wuchty, Jones & Uzzi (2007)

Innovation and interaction \rightarrow networks

Innovation and interaction

- Collective invention (Allen 1983)
- Knowledge spillovers as major drivers of economic growth (Romer 1990, Aghion & Howitt 1992)
- Localized knowledge spillovers (LKS) (Jaffe et al. 1993)

Networks as structure of knowledge diffusion

- Knowledge as a latent public good
- ► Knowledge is only partly codifiable → tacit components
- Learning and exchange of knowledge through personal interaction
- Social proximity as an explanation for LKS (Breschi & Lissoni 2009)
- Consequence
 - → Access to external knowledge restricted by position within the network
 - Network structure influences rate and direction of knowledge flows

Building African Capacities for the Development of Clusters

Types of innovation networks

Examples of networks from the literature

	Nodes	Edges	Application
Cooperation networks	Firms	Cooperations	Powell et al. 1996
Co-funding networks	Organizations	Cooperations	Broekel & Graf 2012
Regional networks	Regions	Cooperations	Wanzenböck et al. 2015
Co-authorship networks	Individuals	Publications	Barabasi et al. 2002
Inventor networks	Individuals	Patents	Fleming et al. 2007
Innovator networks	Patent applicants	Inventors	Cantner & Graf 2006
Citation networks	Authors, patents, publications	Citation	Sorenson et al. 2006
Product space	Product classes	Co-occurence	Hidalgo et al. 2007
Knowledge base	Industries	Labour flow	Neffke et al. 2011

Research topics

Network formation and dynamics

- Network formation
- Mechanisms of formation and evolution

Networks and economic performance

- Individual ties / position and individual performance: relational embeddedness
- Creative potentials versus trust relations: structural embeddedness
- The influence of network structure on system performance

Research topics: network formation and dynamics

- Network formation
 - Motives to cooperate / engage in network (Baum et al. 2003)
 - Innovation network dynamics and the stability of network structures (Schilling & Phelps 2007)
 - Persistence of relations (Giuliani 2011)
 - Global properties (degree distributions, small-worlds) (Watts & Strogatz 1998, Baum et al. 2003, Schilling & Phelps 2007)
- Mechanisms of formation and evolution (Cantner & Graf 2006, Barabasi at al. 2002)
 - Preferential attachment and path dependency (possible lock-in) (Abbasi et al. 2012)
 - Homophily: not too much similarity (Tomasello et al. 2017)
 - Triadic closure: creative potential vs. generating trust (ter Wal 2014)

Research topics: networks and economic performance

- Individual ties / position and individual performance: relational embeddedness (Graf & Krüger 2011, Rowley et al. 2000)
 - Direct and indirect ties matter (Ahuja 2000)
 - Strong vs. weak ties (Rost 2011)
 - Problems of overembeddedness (Uzzi 1997)
 - Influence of more sophisticated centrality measures with mixed results
- Creative potentials versus trust relations: structural embeddedness
 - Burt–Coleman debate: structural holes vs. dense neighborhood (Gilsing & Duysters 2008)
 - Dependent on context: exploration (structural holes) exploitation (density) (Rowley et al. 2000)
- The influence of network structure on system performance (Owen-Smith et al. 2002, Fritsch & Graf 2011)
 - Small-world as a ubiquitous structural phenomenon (Watts & Strogatz 1998, Baum et al. 2003)
 - Simulations show superiority in terms of knowledge diffusion (Cowan & Jonard 2004)
 - Centralized national research networks are less embedded in the global knowledge network (Graf & Kalthaus 2018)

Review articles

- ter Wal, A. L. J. & Boschma, R. (2009), Applying social network analysis in economic geography: framing some key analytic issues, Annals of Regional Science, 43, 3, 739-756
- **Ozman, M. (2009)**, Inter-firm networks and innovation: a survey of literature, Economics of Innovation and New Technology, 18, 1, 39-67
- Cantner, U. & Graf, H. (2011), Innovation Networks: formation, performance and dynamics, in: Antonelli, C. (ed.) Handbook on the Economic Complexity of Technological Change, Edward Elgar, 366-394
- Phelps, C.; Heidl, R. & Wadhwa, A. (2012), Knowledge, Networks, and Knowledge Networks: A Review and Research Agenda, Journal of Management, 38, 1115-1166
- Jackson, M. O. (2014), Networks in the Understanding of Economic Behaviors, Journal of Economic Perspectives, 28, 4, 3-22
- Hidalgo, C. A. (2016) Disconnected, fragmented, or united? A trans-disciplinary review of network science, Applied Network Science, 1, 6, DOI: 10.1007/s41109-016-0010-3

Contents

- 1. Introduction
- 2. Social Network Analysis
- 3. Graph theoretic concepts
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Building African Capacities for the Development of Clusters

Software

UCINET Easy to learn, comprehensive menu, many users (groups.io/g/ucinet/ for questions), good help files, flexible visualization with NetDraw (included), no batch mode, best for smaller networks (n < 1000), only for MS Windows

https://sites.google.com/site/ucinetsoftware/home

R (igraph) Batch mode for repetitive tasks, tables and graphics can be easily exported, platform independent, integration with other statistical packages http://cran.r-project.org/, https://igraph.org/

R (sna, network) Similar to igraph package, some algorithms are slow for large networks, might run out of memory for large networks (n > 5000), some functions that are not in igraph

Pajek Tough menu but the right choice if your network is really large, import data with txt2pajek http://mrvar.fdv.uni-lj.si/pajek/

RSiena Tools for testing hypotheses about network evolution

http://www.stats.ox.ac.uk/~snijders/siena/

Gephi https://gephi.org/

A 202

For qualitative analysis

VennMaker https://www.vennmaker.com/?lang=en

mynetworkmap https://mynetworkmap.com/

Small example with igraph

library(igraph)

- Character Interaction Networks for the HBO Series "Game of Thrones" from https://github.com/mathbeveridge/gameofthrones
- We read the data and select only the most important relations

#import datafile
got.edges <- read.csv("got-s8-edges.csv")
got.edges <- got.edges[got.edges\$Weight >= 35,1:3]

and turn the edgelist into an igraph object

got.ig <- graph_from_data_frame(got.edges, directed=FALSE)</pre>

Let us retrieve some information about the created object

```
print (got.ig)
## IGRAPH bf322bf UN-- 20 31 --
## + attr: name (v/c), Weight (e/n)
## + edges from bf322bf (vertex names):
   [1] DAENERYS--JON
                           DAENERYS--TYRION
##
                                              JAIME
                                                      ---TYRION
##
  [4] JAIME
               --BRIENNE
                           JON
                                 --TYRION
                                              TYRION ---VARYS
   [7] TYRION --SANSA
##
                          TYRION ---DAVOS
                                              DAENERYS--SANSA
## [10] ARYA ---GENDRY
                           JON --ARYA
                                              JON
                                                      --SANSA
                          ARYA ---HOUND
## [13] JON ---SAM
                                              TYRION ---BRAN
## [16] SANSA ---ARYA
                           DAENERYS-JORAH
                                                  --GREY WORM
                                              JON
## [19] JON
              --- TORMUND
                           JON
                                  ---VARYS
                                              JON
                                                  ---DAVOS
## [22] BRIENNE -- TYRION
                                              CERSEI ---OYBURN
                           DAENERYS---VARYS
## + ... omitted several edges
```

• We can have a look at the adjacency matrix

```
get.adjacency(got.ig)
## 20 x 20 sparse Matrix of class "dgCMatrix"
##
  [[ suppressing 20 column names 'DAENERYS', 'JAIME', 'BRIENNE' ... ]]
++
## DAENERYS ... 111... 11.1... 1...
II JON
    1...11111.1..1.1..1.
    1111.11.11.11.....
## TYRION
## SANSA
    ## DAVOS
## ARYA
    ## BRAN
    ## BRONN
    ## VARYS
## GENDRY
    ## SAM
    ## HOUND
    1 . . . . . . . . . . . . . . . . . .
JORAH
## TORMUND
    . 1 1 1 . . . . . . . . . . . . . . .
## OYBURN
    ## EURON
```

 Plot the graph with labels, size proportional to degree and weighted edges

plot(got.ig,vertex.size-degree(got.ig)*2, edge.width=E(got.ig)\$Weight/25)

• The package also has community detection algorithms, e.g. to identify densely connected subgraphs (clusters)

Contents

- 1. Introduction
- 2. Social Network Analysis
- 3. Graph theoretic concepts
- 4. Innovation networks
- 5. Software A very short introduction
- 6. Data gathering and preparation

Data collection – Sampling

- Snowball methods sampling actors
 - begin with a focal actor or set of actors
 - each of these actors is asked to name some or all of their ties to other actors

 \rightarrow ego-network(s)

- actors who are not connected (i.e. "isolates") are not identified
- no guaranteed way of finding all of the connected individuals in the population
- Full network methods sampling relations
 - require that we collect information about each actor's ties with all other actors: census of ties in a population of actors
 - Full network data is necessary to properly define and measure many of the structural concepts of network analysis (e.g. betweenness)
 - allows for very powerful descriptions and analyses of social structures

Relational data sources

- Primary data
 - Snowball
 - Roster recall
 - Open list
- Patents (or publications)
 - Co-inventor networks
 - Co-applications
 - Innovator networks: applicants linked by common inventors
 - Citation networks
- Collaboration data
 - Commercial data (e.g. SDC Platinum Refinitiv)
 - Funding data (Förderkatalog in GER, CORDIS for EU)
 - . . .

Boundaries of the Network

- Defining boundaries in primary data collection
 - What type of relation?
 - Intensity of relation?
 - Who are the focal actors?
 - Open or closed list?
- Defining boundaries with patents or publications:
 - Technological: IPC-classes, keywords or aggregates thereof (e.g. IPC4, technologies [concordance])
 - Time window: usually up to 10 years, assumption of link decay!
 - Regions: all patents (publications) with at least one inventor (author) located in the focal region

Example for primary data collection – SCW-Networks

Questionnaire

- Regional clusters of actors who receive funding
- Only relations of funded actors can be observed (firms, universities, research institutes)
- We ask for the maximum of ten most important R&D partners along with link attributes

23. Bitte nennen Sie uns ihre strategisch wichtigsten FuE-Partner.

Unter strategisch wichtigen FuE-Partnern verstehen wir Partner (andere Unternehmen, und/oder nicht kommerzielle Einrichtungen), mit denen Sie gemeinsam neue Produkte, Fertigungsverfahren und sonstige Innovationen entwickeln, welche für die strategische Ausrichtung Ihres Unternehmens von großer Bedeutung sind. Eine reine Auftragsvergabe ohne aktive Zusammenarbeit wird nicht als Kooperation betrachtet.

Strategisch wichtigste FuE-Partner (Name und Standort)	Haben Sie bereits vor September 2007 mit diesem Partner gemeinsa- me FuE betrieben?		Wurde diese Beziehung durch den "Spitzencluster-Wettbewerb" ange- stoßen bzw. intensiviert?	
	ja	nein	ja	nein
1.	٩	٩	ū	٩
2.	u.	a	•	o
3.	D	٩	D I	a
			6	

Example networks

Art des Akteurs

Columentation

O KULL KOLD
 A UniversitätHockschula
 ♥ Forschungseinischlung
 # nicht bekannt Cool Silicon 2013

Antworten: 21 - Akteure: 89

Example networks

Cool Silicon 2011

Antworten: 17 - Akteure: 97

green = initiated by LECC lightblue = intensified by LECC

Perpion

Chasternegio Deutschark Europa Wolt

Data cleaning

The "names game"

- The problem: If the character string for two nodes is exactly the same (simple string matching), we assume that they refer to the same person.
- However, this might not be the case:
 - Databases are not perfect, names might change (e.g. academic titles, middle names) or spelled differently. 'Ronald S. Burt' and 'Ronald Burt' are grouped as different nodes even though it is one person.
 - → Type I error (false negatives, different nodes refer to the same person)
 - Some names are very common. Two nodes named 'John Smith' might refer to different persons.
 - → Type II error (false positives, one node refers to more than one person)
- Parsing: reducing noise by changing case, removing double blanks, symbols, accents, etc.
- Matching: SSM or other algorithms
- Filtering: using additional information to reject false positives
- Manual check for small data
- See Raffo & Lhuillery (2009)

Short network survey

visit <u>https://forms.gle/qDmxEBYddLybPNMP8</u>

- Please take the survey, results will be discussed in the feedback session
- Homework
 - Develop your own survey including network questions
 - Form 4 teams to work on a survey that could help you understand specific aspects of your cluster
 - Questionnaire should be finished by Workshop 3 (combined task with "data gathering" by Matthias Hügel)

Building African Capacities for the Development of Clusters

References I

- Abbasi, A.; Hossain, L. & Leydesdorff, L. (2012) Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.
- Aghion, P. & Howitt, P. (1992), A model of growth through creative destruction, Econometrica, 60, 2, 323–351
- Ahuja, G. (2000), Collaboration networks, structural holes, and innovation: A longitudinal study, Administrative Science Quarterly, 45, 3, 425-455
- Allen, R. C. (1983), Collective invention, Journal of Economic Behavior and Organization, 4, 1–24
- Barabasi, A.; Jeong, H.; Neda, Z.; Ravasz, E.; Schubert, A. & Vicsek, T. (2002), Evolution of the social network of scientific collaborations, Physica, A 311, 3–4, 590–614
- Baum, J. A. C.; Shipilov, A. V. & Rowley, T. J. (2003), Where do small worlds come from?, Industrial and Corporate Change, 12, 4, 697-725
- Breschi, S. & Lissoni, F. (2009), Mobility of skilled workers and co-invention networks: an anatomy of localized knowledge flows, Journal of Economic Geography, 9, 4, 439–468
- Broekel, T. & Graf, H. (2012) Public research intensity and the structure of German R&D networks: a comparison of 10 technologies, Economics of Innovation and New Technology, Routledge, 21, 345–372
- Cantner, U. & Graf, H. (2006), The network of innovators in Jena: An application of social network analysis, Research Policy, 35, 4, 463–480
- Cowan, R., & Jonard, N. (2004) Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575.
- Fleming, L.; King, Charles, I. & Juda, A. I. (2007), Small Worlds and Regional Innovation, Organization Science, 18, 6, 938–954
- Fritsch, M. & Graf, H. (2011), How sub-national conditions affect regional innovation systems: The case of the two Germanys, Papers in Regional Science, 90, 2, 331–353

Social Network Analysis - Holger Graf - Chair of Microeconomics - Friedrich-Schiller-University Jena

Building African Capacities for the Development of Clusters

References II

- Gilsing, V. A. & Duysters, G. (2008), Understanding novelty creation in exploration networks–Structural and relational embeddedness jointly considered, Technovation, 28, 10, 693–708
- Giuliani, E. (2007), The selective nature of knowledge networks in clusters: evidence from the wine industry, Journal of Economic Geography, 7, 2, 139–168
- Giuliani, E. (2011), Role of Technological Gatekeepers in the Growth of Industrial Clusters: Evidence from Chile, Regional Studies, 45, 10, 1329-1348
- Graf, H., & Kalthaus, M. (2018) International research networks: Determinants of country embeddedness. Research Policy, 47(7), 1198–1214.
- Graf, H. & Krüger, J. (2011), The Performance of Gatekeepers in Innovator Networks, Industry & Innovation, 18, 1, 69-88
- Hidalgo, C. A.; Klinger, B.; Barabasi, A.-L. & Hausmann, R. (2007), The Product Space Conditions the Development of Nations, Science, 317, 5837, 482-487
- Jaffe, A. B.; Trajtenberg, M. & Henderson, R. (1993), Geographic localization of knowledge spillovers as evidenced by patent citations, Quarterly Journal of Economics, 108, 3, 577-598
- Neffke, F.; Henning, M. & Boschma, R. (2011) How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions, Economic Geography, 87, 237-265
- Owen-Smith, J.; Riccaboni, M.; Pammolli, F. & Powell, W. W. (2002), A comparison of U.S. and European university-industry relations in the life sciences, Management Science, 48, 1, 24-43
- Powell, W. W., Koput, K. W. & Smith-Doerr, L. (1996), Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology, Administrative Science Quarterly, 41, 1, 116-145
- Romer, P. M. (1990), Endogenous technological change, Journal of Political Economy, 98, 71-102
- Rost, K. (2011), The strength of strong ties in the creation of innovation, Research Policy, 40, 4, 588-604

References III

- Rowley, T.; Behrens, D. & Krackhardt, D. (2000), Redundant Governance Structures: An Analysis of Structural and Relational Embeddedness in the Steel and Semiconductor Industries, Strategic Management Journal, 21, 3, 369-386
- Schilling, M. A. & Phelps, C. C. (2007), Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation, Management Science, 53, 7, 1113-1126
- Sorenson, O., Rivkin, J. W. & Fleming, L. (2006), Complexity, networks and knowledge flow, Research Policy, 35, 7, 994-1017
- ter Wal, A. L. J. (2014). The dynamics of the inventor network in German biotechnology: geographic proximity versus triadic closure. Journal of Economic Geography, 14(3), 589–620.
- Tomasello, M. V.; Napoletano, M.; Garas, A. & Schweitzer, F. (2017) The rise and fall of R&D networks. Industrial and Corporate Change, 26(4), 617–646.
- Uzzi, B. (1997) Social structure and competition in interfirm networks: the paradox of embeddedness. Administrative Science Quarterly, 42(1), 35–67.
- Wanzenböck, I.; Scherngell, T. & Lata, R. (2015) Embeddedness of European Regions in European Union-Funded Research and Development (R&D) Networks: A Spatial Econometric Perspective, Regional Studies, 49, 1685-1705
- Watts, D. J. & Strogatz, S. H. (1998) Collective dynamics of "small-world" networks. Nature, 393(4), 440–442
- Wuchty, S., Jones, B. F. & Uzzi, B. (2007), The Increasing Dominance of Teams in Production of Knowledge, Science, 316, 5827, 1036-1039